

Diabetic Ketoacidosis in Adults

Dr. Jessica Ross, Lakeridge Health Port Perry Katrina Manning, RN, BScN

Presenter Disclosures

- Presenter: Dr. Jessica Ross
- Relationships with commercial interest: not applicable

Disclosure of Commercial Support

- This program has received financial support from AstraZeneca Canada in the form of an unrestricted education grant.
- Potential of conflicts of interest:
 - Not applicable.
 - The presenter has not received honoraria and the financial supporter does not benefit from the sale of products discussed in this program.

Mitigating Potential Bias

 This CME program and its material is peer reviewed and all the recommendations involving clinical medicine are based on evidence that is accepted within the profession; and all scientific research referred to, reported, or used in the CME/CPD activity in support or justification of patient care recommendations conforms to the generally accepted standards.

Objectives

By the end of this presentation, the learner will:

- Understand the pathophysiology of Diabetic Ketoacidosis (DKA)
- Recognize, investigate and confidently diagnose DKA in adults
- Be familiar with current treatment guidelines and preprinted orders
- Be aware of recent research and controversies in the field

Statistics

- > 140,000 visits per year
- > 1 billion dollars per year
- Average length of hospital stay 3.4 days¹
- Mortality in adults <1%²
- Type I (53%), Type II (39%)³

1. Centers for Disease Control. Diabetes Public Health Resource. 2009.

2. Hux et al. Diabetes in Ontario: An ICES Practice Atlas. 2003.

3. Balasubramanyam et al. New profiles of diabetic ketoacidosis. Arch Int Med. 1999; 159:2317-2322.

"We elves try to stick to the four main food groups: candy, candy canes, candy corns and syrup."

Case scenario

- 34 year-old male
- New diagnosis type II diabetes
- Indulging in Christmas goodies
- 2-day history of increased thirst, urination, dysuria
- Today onset of nausea, vomiting, very little urinary output
- Medications: Metformin 500mg BID, Perindopril 8mg, ASA 81mg

Examination

- Vitals: HR 140, RR 34, BP 70/40, 36.4C
- Glucometer: high
- EKG: sinus tachycardia
- Urinalysis: 4+ ketones, 2+ leukocytes, + nitrites, + blood

"SON of a NUTcracker!"

"I'm a cotton-headed ninny-muggins"

Pathophysiology

- Insulin deficiency
 - (NO insulin or SOME insulin with large counterregulatory hormone surge)
- Ketogenesis (fat breakdown)
- Hyperglycemia (decreased utilization, protein/glycogen breakdown)
- Ketones and Glucose cause an osmotic diuresis
- Serum ketones and osmoles rise in dehydration

Diagnostic criteria

- Glucose > 14 mmol/L
- Ketonemia
- pH <7.3
- Anion gap > 12 mmol/L
- Bicarbonate <15 mmol/L

Goguen et al. Hyperglycemic emergencies in adults. Canadian Journal of Diabetes. 2013; 37(S1): S72-S76. American Diabetes Association. Hyperglycemic crises in diabetes. Diabetes Care. 2004; 27(S1): S94-S102.

Laboratory Investigations

- CBC: Hb 145 g/dL, leuks 23.3, plt 381
- Na 133, K 2.9, Cl 103
- Cr 144, BUN 17
- Glucose 29.7 mmol/L
- Serum ketones
- ABG: pH 7.1, pCO2 23, PO2 95, bicarbonate 11

- ABCs
- Fluid resuscitate with normal saline
- Consider foley if very dehydrated
- Replace potassium
- Treat the underlying cause
- Administer insulin
- Give dextrose

Goguen et al. Hyperglycemic emergencies in adults. Canadian Journal of Diabetes. 2013; 37(S1): S72-S76. American Diabetes Association. Hyperglycemic crises in diabetes. Diabetes Care. 2004; 27(S1): S94-S102.

Quiz!

When do I start my insulin infusion?

- 1. After my initial fluid bolus
- 2. Once my glucose level is confirmed at >14 mmol/L
- 3. Once my potassium is confirmed at >3.3 mmol/L
- 4. Hmmm... can I phone a friend (Randy Wax)?
- 5. Easy! Consult my pre-printed order set

- ABCs
- Fluid resuscitate with normal saline
- Consider foley if very dehydrated
- Replace potassium
- Treat the underlying cause
- Administer Insulin *** only if K >3.3-3.5
- Give dextrose once glucose <14

Goguen et al. Hyperglycemic emergencies in adults. Canadian Journal of Diabetes. 2013; 37(S1): S72-S76. American Diabetes Association. Hyperglycemic crises in diabetes. Diabetes Care. 2004; 27(S1): S94-S102.

Insulin

- low dose is safe and effective
- 0.1-0.14 U/kg/hour starting dose
- limited data to advise initial bolus⁶
- hold until potassium is >3.3-3.5
- SC insulin may be safe and effective for uncomplicated DKA7

 Kitabchi AE et al. Is a Priming Dose of Insulin Necessary in a Low-Dose Insulin Protocol for the Treatment of Diabetic Ketoacidosis? Diabetes Care. 2008; 31(11):2081-5.

7. Mazer M et al.Is Subcutaneous Administration of Rapid-Acting Insulin as Effective as Intravenous Insulin for Treating Diabetic Ketoacidosis?Annals of Intensive Care 2011, 1:23

Bicarbonate

- Consideration of IV sodium bicarbonate administration for severe acidosis
- Guidelines suggest at pH <6.9-7.0
- No evidence for improved clinical outcomes in DKA^{8,9}
- Potential risks including cerebral edema

8. Duhon B et al. Intravenous sodium bicarbonate therapy in severely acidotic diabetic ketoacidosis. Ann Pharmacotherapy. 2013 (Jul/Aug); 47: 970-975.
9. Chua HR et al. Bicarbonate in diabetic ketoacidosis - a systematic review. Annals of Intensive Care. 2011;1:23.

Case resolution

Buddy

- Fluid resuscitation with normal saline
- 40 mmol/L KCl in 1L NS over 2 hours
- Insulin withheld until K > 3.3
- Insulin infusion given with D5W per protocol
- Transitioned to subcutaneous insulin once eating
- Started on antibiotics for his UTI
- Inpatient consultation from diabetic educators
- Discharged home with family physician follow-up

Pitfalls...

Pearls...

• Negative serum ketones, no acidosis, normal serum bicarbonate... can this patient still have DKA?

• Normal anion gap... what about this patient?

Goguen et al. Diabetic ketoacidosis: challenging cases. Endocrinology rounds. 2008; 8 (8) 1-6.

Pearls

- No acidosis?
 - Metabolic alkalosis (HCO3- production) can mask ketosis (equivalent H+)
 - Look for an anion gap
- No ketones?
 - Volume contraction shifts acetone and acetoacetate to betahydroxybutyrate (unmeasured)
- Nomal anion gap?
 - Every 10 g/L reduction in albumin, corrected anion gap decreases by 2.3 mmol/L

"I just like to smile. Smiling's my favourite."

Early Detection

- Triage: onset and duration of symptoms, history, mental status, objective data
- Bed allocation from triage: cardiac monitor
- Medical directives: IV insertion, capillary blood glucose, ECG, IO access
- Rapid diagnostics: UA, STAT electrolytes, VBG, magnesium, phosphate, serum osmolality. Point of care testing for ketones at triage

Initial assessment

- •A: assess and stabilize airway, supplemental O2
- B: Kussmaul respirations
- C: arrhythmia, hemodynamic status
- D: mental status, differential diagnoses
- Pain: abdominal pain

McNauthon, Candace, MD et al; Clinical Diabetes; Diabetes in the Emergency Department: Acute Care of Diabetes Patients; Nov 2011; 29,2.

Order set pearls

- Correct fluid loss
- Correct acidosis (by correcting hyperglycemia)
- Correct electrolyte imbalance

CDA recommends maintaining glucose between 12 - 14 mmol until anion gap is 12
or less to prevent hypoglycemia

Current Insulin Infusion Rate				D5 Rate
Glucose (mmoL/L)	0 to 5 units/hour	6 – 10 units/hour	11 or greater units/hour	D5W (mL/hr)
Less than 4	Stop Insulin; fo	ulin; follow Hypoglycemia protocol. Call MRP.		
4 - 5	Decrease Rate by 50%, measure Glucose in one hour			225
5.1 - 7.8	No Change	Decrease rate 2 units/hr. if glucose is falling		200
7.9 - 11.1	2 units IV bolus rate 1 unit/hou	r No change		175
11.2 - 13.9	4 units IV bolus and increase rate 1 unit/hour	4 units IV bolus and increase rate 2 units/hour	4 units IV bolus and increase rate 3 units/hour	150
14 - 16.7	8 units IV bolus and increase rate 1 unit/hour	8 units IV bolus and increase rate 2 units/hour	8 units IV bolus and increase rate 3 units/hour	100
16.8 - 19.4	10 units IV bolus and increase rate 1 unit/hour	10 units IV bolus and increase rate 3 unit/hour	10 units IV bolus and increase rate 4 unit/hour	50
Greater than 19.4	12 units IV bolus and increase rate 2 unit/hour	12 units IV bolus and increase rate 4 unit/hour	12 units IV bolus and increase rate 6 unit/hour	25

Order set pitfalls

- PPO doesn't specifically indicate to <u>HOLD</u> insulin until potassium level is verified
- Start or don't start the D5W?
- But what if patient requires fluid restriction?
- What if patient is on insulin pump?

• Gosh they're long!!

What now?

- Disposition
- Basal SQ insulin
- Discharge instructions
- Sick day planning

Disposition

- Able to tolerate PO?
- Subcutaneous dose of basal insulin should be given 1 hour before insulin infusion is stopped. (0.2-0.3 U/kg/day in divided doses)
- Patients rarely meet criteria for discharge from ED.

Discharge Instructions

Durham Region Diabetes Network:
*Charles H Best Centre (type 1 only)
*Diabetes Education Program (type 2)
*Centre for Complex Diabetes Care

Sick day planning

- SICK
- •S: sugar (check frequently)
- •I: insulin (keep taking basal, titrate shortacting)
- C: carbohydrate and fluids (try to keep carb intake as normal as possible, increase fluids)
- K: ketones (check)

SADMAN

- Stop taking if unable to tolerate PO:
- •S: sulfonyureas
- A: ACE inhibitors
- D: diuretics, direct renin-inhibitors
- M: metformin
- •A: angiotensin receptor blockers
- •N: NSAIDs

Normal or not-so-normal saline

- Correct shock state and normalize vitals
- Slow down infusion
- Potential risk of cerebral edema with 1/2 NS and rapid drop in serum osmolality
- Be aware hyperchloremia may occur and unresolving acidosis can prolong LOS

DKA vs HHS

Lab Value	DKA	HHS
glucose	\uparrow	$\uparrow \uparrow$
anion gap	>10-12	no
serum osmolality	\uparrow	↑↑ (really dehydrated)
sodium	\downarrow	\uparrow
bicarbonate	\downarrow	↑
ketones	positive	negative
potassium	↑or↓	↑or↓

McDonald Lenahan, Christy, MSN RN and Holloway, Brenda DNSc. RN; Journal of Emergency Nursing; Differentiating between DKA and HHS; Aug 2014. jenonline.org

Thank you!

- Questions?
- Dr. Ross jessynb@hotmail.com
- Katrina kmanning@lakeridgehealth.on.ca

ECG findings Hyperkalemia

http://www.aafp.org/afp/2006/0115/p283.html

hyperkalemia

Same patient...

ECG findings Hypokalemia

http://www.fpnotebook.com/legacy/Renal/Potassium/HypkIm.htm

VBG vs ABG in DKA

- Potential harms of ABG:
 - pain, hematoma, arterial injury and thrombosis, embolism, infection, needlestick injury to healthcare worker
- pH:
 - ABG 0.02 pH units > VBG
- Bicarbonate
 - ABG 1.88 mEq/L < VBG
 - ABG 1.88 mEq/L < VBG

Kelly AM. The case for venous rather than arterial blood gases in diabetic ketoacidosis. Emergency Medicine Australasia. 2006; 18:64-67.

